#### **Garlic Butter Live Resin Sugar**

Sample ID: 2401APO0195.0912 Strain: Garlic Butter

Matrix: Concentrates & Extracts

Type: Live Resin

Source Batch #: 20230724GMOGRB-3T1T2LR XD:20240102

Produced:

Collected: 01/12/2024 03:43 pm

Received: 01/12/2024 Completed: 01/22/2024

Batch #: 20230724GMOGRB-3T1T2LR

XD:20240102 Harvest Date:

Client

Aeriz AZ

Lic. # 00000106DCQV00747138

Production Date: 01/02/2024 Production Method: Butane



# Summary

| Date Tested | Result                                                                           |
|-------------|----------------------------------------------------------------------------------|
|             | Pass                                                                             |
| 01/17/2024  | Complete                                                                         |
| 01/18/2024  | Complete                                                                         |
| 01/18/2024  | Pass                                                                             |
| 01/19/2024  | Pass                                                                             |
| 01/18/2024  | Pass                                                                             |
| 01/18/2024  | Pass                                                                             |
| 01/17/2024  | Pass                                                                             |
|             | 01/17/2024<br>01/18/2024<br>01/18/2024<br>01/19/2024<br>01/18/2024<br>01/18/2024 |

Complete Cannabinoids

71.6477%

Total THC

0.5534%

Total CRD

85.0516%

6.8447%

(Q3) Total Terpenes

|           | TOTAL THE |     | TOLAT  | טם.     | Iotal C  | annabinoius | total terpenes |   |
|-----------|-----------|-----|--------|---------|----------|-------------|----------------|---|
| Analyte   |           | LOD | LOQ    | Result  | Result   |             |                | Q |
|           |           | %   | %      | %       | mg/g     |             |                |   |
| THCa      |           |     | 0.1000 | 78.3487 | 783.487  |             |                |   |
| Δ9-THC    |           |     | 0.1000 | 2.9359  | 29.359   |             |                |   |
| Δ8-THC    |           |     | 0.1000 | ND      | ND       |             |                |   |
| THCV      |           |     | 0.1000 | ND      | ND       |             |                |   |
| CBDa      |           |     | 0.1000 | 0.1597  | 1.597    |             |                |   |
| CBD       |           |     | 0.1000 | 0.4133  | 4.133    |             |                |   |
| CBDVa     |           |     | 0.1000 | ND      | ND       |             |                |   |
| CBDV      |           |     | 0.1000 | ND      | ND       |             |                |   |
| CBN       |           |     | 0.1000 | ND      | ND       |             |                |   |
| CBGa      |           |     | 0.1000 | 2.6327  | 26.327   |             |                |   |
| CBG       |           |     | 0.1000 | 0.4136  | 4.136    |             |                |   |
| CBC       |           |     | 0.1000 | 0.1477  | 1.477    |             |                |   |
| Total THC |           |     |        | 71.6477 | 716.4770 |             |                |   |
| Total CBD |           |     |        | 0.5534  | 5.5340   |             |                |   |
| Total     |           |     |        | 85.0516 | 850.516  |             |                |   |

Date Tested: 01/17/2024 07:00 am



Bryant Kearl Lab Director 01/22/2024

Confident LIMS All Rights Reserved coa.support@confidentlims.com (866) 506-5866 www.confidentlims.com



(602) 767-7600 http://www.apollolabscorp.com Lic# 00000013LCRK62049775

2 of 6

#### **Garlic Butter Live Resin Sugar**

Sample ID: 2401APO0195.0912 Strain: Garlic Butter

Matrix: Concentrates & Extracts Type: Live Resin Source Batch #: 20230724GMOGRB-3T1T2LR XD:20240102

Produced: Collected: 01/12/2024 03:43 pm Received: 01/12/2024

Completed: 01/22/2024 Batch #: 20230724GMOGRB-3T1T2LR

XD:20240102 Harvest Date:

Client

Aeriz AZ

Lic. # 00000106DCQV00747138

Lot #:

Production Date: 01/02/2024 Production Method: Butane

**Pesticides Pass** 

| Acephate         0.2000         0.4000         ND         Pass Imazalil         0.1000         0.2000         ND         Pass Imazalil           Acetamiprid         0.1000         0.2000         ND         Pass Imidacloprid         0.2000         0.4000         ND         Pass Kresoxim Methyl         0.2000         0.4000         ND         Pass Kresoxim Methyl         0.2000         0.4000         ND         Pass Malathion         0.1000         0.2000         ND         Pass Malathion         0.1000         0.2000 | ND Pass |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Acephate         0.2000         0.4000         ND         Pass Imazalil         0.1000         0.2000         ND         Pass Imazalil           Acetamiprid         0.1000         0.2000         ND         Pass Imidacloprid         0.2000         0.4000         ND         Pass Kresoxim Methyl         0.2000         0.4000         ND         Pass Kresoxim Methyl         0.2000         0.4000         ND         Pass Malathion         0.1000         0.2000         ND         Pass Malathion         0.1000         0.2000 | ND Pass                 |
| Acetamiprid         0.1000         0.2000         ND         Pass Imidacloprid         0.2000         0.4000         ND         Pass Imidacloprid           Aldicarb         0.2000         0.4000         ND         Pass Kresoxim Methyl         0.2000         0.4000         ND         Pass Malathion           Azoxystrobin         0.1000         0.2000         ND         Pass Malathion         0.1000         0.2000         ND         Pass Malathion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND Pass ND Pass ND Pass ND Pass ND Pass ND Pass                         |
| Aldicarb         0.2000         0.4000         ND         Pass         Kresoxim Methyl         0.2000         0.4000         ND         Pass           Azoxystrobin         0.1000         0.2000         ND         Pass         Malathion         0.1000         0.2000         ND         Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND Pass ND Pass ND Pass ND Pass                                         |
| Azoxystrobin         0.1000         0.2000         ND         Pass         Malathion         0.1000         0.2000         ND         Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND Pass<br>ND Pass<br>ND Pass                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND Pass<br>ND Pass                                                      |
| Bifenazate 0.1000 0.2000 ND M1 Pass Metalaxyl 0.1000 0.2000 ND Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND Pass                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NID D                                                                   |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND Pass                                                                 |
| Cyfluthrin 0.5000 1.0000 ND Pass Piperonyl 1.0000 2.0000 ND Pass Piperonyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND Pass                                                                 |
| Cypermethrin 0.5000 1.0000 ND Pass Butoxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND Door                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                         |
| Trifloxystrobin 0.1000 0.2000 ND M2 Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |

Date Tested: 01/18/2024 07:00 am



Bryant Kearl Lab Director 01/22/2024

Confident LIMS All Rights Reserved coa.support@confidentlims.com (866) 506-5866 www.confidentlims.com



(602) 767-7600 http://www.apollolabscorp.com Lic# 00000013LCRK62049775

3 of 6

## **Garlic Butter Live Resin Sugar**

Sample ID: 2401APO0195.0912 Strain: Garlic Butter

Matrix: Concentrates & Extracts Type: Live Resin Source Batch #: 20230724GMOGRB-3T1T2LR XD:20240102

Produced: Collected: 01/12/2024 03:43 pm Received: 01/12/2024 Completed: 01/22/2024 Batch #: 20230724GMOGRB-3T1T2LR

XD:20240102

Harvest Date:

Client Aeriz AZ

Lic. # 00000106DCQV00747138

Production Date: 01/02/2024 Production Method: Butane

| Microbials | Pass |
|------------|------|
|------------|------|

| Analyte                                                       | Limit                       | Result | Status | Q |
|---------------------------------------------------------------|-----------------------------|--------|--------|---|
| Salmonella SPP                                                | Detected/Not Detected in 1g | ND     | Pass   | _ |
| Aspergillus Flavus Aspergillus Fumigatus or Aspergillus Niger | Detected/Not Detected in 1g | ND     | Pass   |   |
| Aspergillus terreus                                           | Detected/Not Detected in 1g | ND     | Pass   |   |

| Analyte | LOQ   | Limit | Result     | Status | Q |
|---------|-------|-------|------------|--------|---|
|         | CFU/g | CFU/g | CFU/g      |        |   |
| E. Coli | 10.0  | 100.0 | < 10 CFU/g | Pass   |   |

Date Tested: 01/19/2024 12:00 am

Mycotoxins Pass

| Analyte          | LOD   | LOQ   | Limit | Units | Status | Q |
|------------------|-------|-------|-------|-------|--------|---|
|                  | µg/kg | µg/kg | μg/kg | μg/kg |        |   |
| B1               | 5     | 10    | 20    | ND    | Pass   |   |
| B2               | 5     | 10    | 20    | ND    | Pass   |   |
| G1               | 5     | 10    | 20    | ND    | Pass   |   |
| G2               | 5     | 10    | 20    | ND    | Pass   |   |
| Total Aflatoxins | 5     | 10    | 20    | ND    | Pass   |   |
| Ochratoxin A     | 5     | 10    | 20    | ND    | Pass   |   |

Date Tested: 01/18/2024 07:00 am

**Heavy Metals Pass** 

| Analyte | LOD    | LOQ    | Limit  | Units | Status | Q |
|---------|--------|--------|--------|-------|--------|---|
|         | PPM    | PPM    | PPM    | PPM   |        |   |
| Arsenic | 0.0660 | 0.1330 | 0.4000 | ND    | Pass   |   |
| Cadmium | 0.0660 | 0.1330 | 0.4000 | ND    | Pass   |   |
| Lead    | 0.1660 | 0.3330 | 1.0000 | ND    | Pass   |   |
| Mercury | 0.0330 | 0.0660 | 0.2000 | ND    | Pass   |   |

Date Tested: 01/17/2024 07:00 am



Bryant Kearl Lab Director 01/22/2024

Confident LIMS All Rights Reserved coa.support@confidentlims.com (866) 506-5866 www.confidentlims.com



ARIZONA DEPARTMENT OF HEALTH SERVICES' WARNING:
Marijuana use can be addictive and can impair an individual's ability to drive a motor vehicle or operate heavy machinery. Marijuana smoke contains carcinogens and can lead to an increased risk for cancer, tachycardia, hypertension, heart attack, and lung infection. Marijuana use may affect the health of a pregnant woman and the unborn child. Using marijuana during pregnancy could cause birth defects or other health issues to your unborn child;
KEEP OUT OF REACH OF CHILDREN.
The product associated with the COA has been tested by Apollo Labs using validated state certified testing methodologies as required by Arizona state law. Values reported herein relate only to the specific sample of

product submitted by Client for testing. Apollo Labs makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written approval of Apollo Labs.





(602) 767-7600 http://www.apollolabscorp.com Lic# 00000013LCRK62049775

4 of 6

#### **Garlic Butter Live Resin Sugar**

Sample ID: 2401APO0195.0912 Strain: Garlic Butter

Matrix: Concentrates & Extracts Type: Live Resin

Source Batch #: 20230724GMOGRB-3T1T2LR XD:20240102

Produced:

Collected: 01/12/2024 03:43 pm Received: 01/12/2024 Completed: 01/22/2024

Batch #: 20230724GMOGRB-3T1T2LR XD:20240102 Harvest Date:

Client

Aeriz AZ

Lic. # 00000106DCQV00747138

Lot #:

Production Date: 01/02/2024 Production Method: Butane

#### **Residual Solvents**

| Analyte                 | LOQ       | Limit     | Mass | Status | Q    |
|-------------------------|-----------|-----------|------|--------|------|
|                         | PPM       | PPM       | PPM  |        | Pass |
| Acetone                 | 381.0000  | 1000.0000 | ND   | Pass   |      |
| Acetonitrile            | 154.0000  | 410.0000  | ND   | Pass   |      |
| Benzene                 | 1.0000    | 2.0000    | ND   | Pass   |      |
| Butanes                 | 1914.0000 | 5000.0000 | ND   | Pass   |      |
| Chloroform              | 24.0000   | 60.0000   | ND   | Pass   |      |
| Dichloromethane         | 231.0000  | 600.0000  | ND   | Pass   |      |
| Ethanol                 | 1910.0000 | 5000.0000 | ND   | Pass   |      |
| Ethyl-Acetate           | 1907.0000 | 5000.0000 | ND   | Pass   |      |
| Ethyl-Ether             | 1901.0000 | 5000.0000 | ND   | Pass   |      |
| n-Heptane               | 1892.0000 | 5000.0000 | ND   | Pass   |      |
| Hexanes                 | 115.0000  | 290.0000  | ND   | Pass   |      |
| Isopropanol             | 1915.0000 | 5000.0000 | ND   | Pass   |      |
| Isopropyl-Acetate       | 1908.0000 | 5000.0000 | ND   | Pass   |      |
| Methanol                | 1141.0000 | 3000.0000 | ND   | Pass   |      |
| Pentane                 | 1923.0000 | 5000.0000 | ND   | Pass   |      |
| Toluene                 | 343.0000  | 890.0000  | ND   | Pass   |      |
| Xylenes + Ethyl Benzene | 841.0000  | 2170.0000 | ND   | Pass   |      |

Date Tested: 01/18/2024 07:00 am





Bryant Kearl Lab Director 01/22/2024

Confident LIMS All Rights Reserved coa.support@confidentlims.com (866) 506-5866 www.confidentlims.com



(602) 767-7600 http://www.apollolabscorp.com Lic# 00000013LCRK62049775

5 of 6

#### **Garlic Butter Live Resin Sugar**

Sample ID: 2401APO0195.0912

Strain: Garlic Butter

Matrix: Concentrates & Extracts Type: Live Resin Source Batch #: 20230724GMOGRB-3T1T2LR XD:20240102 Produced:

Collected: 01/12/2024 03:43 pm Received: 01/12/2024 Completed: 01/22/2024

Batch #: 20230724GMOGRB-3T1T2LR XD:20240102 Harvest Date:

Client

Aeriz AZ

Lic. # 00000106DCQV00747138

Production Date: 01/02/2024 Production Method: Butane

### Terpenes

| •                    |        |        |        |    |  |
|----------------------|--------|--------|--------|----|--|
| Analyte              | LOQ    | Mass   | Mass   | Q  |  |
|                      | %      | %      | mg/g   |    |  |
| D,L-Limonene         | 0.0010 | 1.8607 | 18.607 | Q3 |  |
| β-Caryophyllene      | 0.0010 | 1.4482 | 14.482 | Q3 |  |
| β-Myrcene            | 0.0010 | 1.3473 | 13.473 | Q3 |  |
| α-Humulene           | 0.0010 | 0.5178 | 5.178  | Q3 |  |
| β-Pinene             | 0.0010 | 0.2944 | 2.944  | Q3 |  |
| α-Bisabolol          | 0.0010 | 0.2712 | 2.712  | Q3 |  |
| Endo-Fenchyl Alcohol | 0.0010 | 0.2501 | 2.501  | Q3 |  |
| α-Pinene             | 0.0010 | 0.2121 | 2.121  | Q3 |  |
| α-Terpineol          | 0.0010 | 0.2058 | 2.058  | Q3 |  |
| Linalool             | 0.0010 | 0.1737 | 1.737  | Q3 |  |
| Terpinolene          | 0.0010 | 0.0556 | 0.556  | Q3 |  |
| Camphene             | 0.0010 | 0.0400 | 0.400  | Q3 |  |
| trans-Nerolidol      | 0.0010 | 0.0393 | 0.393  | Q3 |  |
| Caryophyllene Oxide  | 0.0010 | 0.0292 | 0.292  | Q3 |  |
| cis-beta-Ocimene     | 0.0010 | 0.0265 | 0.265  | Q3 |  |
| Geraniol             | 0.0010 | 0.0221 | 0.221  | Q3 |  |
| D,L-Borneol          | 0.0010 | 0.0205 | 0.205  | Q3 |  |
| Valencene            | 0.0010 | 0.0167 | 0.167  | Q3 |  |
| Fenchone             | 0.0010 | 0.0135 | 0.135  | Q3 |  |
| 3-Carene             | 0.0010 | ND     | ND     | Q3 |  |
| α-Cedrene            | 0.0010 | ND     | ND     | Q3 |  |
| α-Phellandrene       | 0.0010 | ND     | ND     | Q3 |  |
| α-Terpinene          | 0.0010 | ND     | ND     | Q3 |  |
| α-Thujone            | 0.0010 | ND     | ND     | Q3 |  |
| trans-β-Farnesene    | 0.0010 | ND     | ND     | Q3 |  |
| Camphor              | 0.0010 | ND     | ND     | Q3 |  |
| Carvacrol            | 0.0010 | ND     | ND     | Q3 |  |
| Carvone              | 0.0010 | ND     | ND     | Q3 |  |
| Cedrol               | 0.0010 | ND     | ND     | Q3 |  |

| Analyte            | LOQ    | Mass   | Mass   | Q  |  |
|--------------------|--------|--------|--------|----|--|
|                    | %      | %      | mg/g   |    |  |
| cis-Citral         | 0.0010 | ND     | ND     | Q3 |  |
| cis-Farnesol       | 0.0010 | ND     | ND     | Q3 |  |
| cis-Nerolidol      | 0.0010 | ND     | ND     | Q3 |  |
| Citronellol        | 0.0010 | ND     | ND     | Q3 |  |
| Eucalyptol         | 0.0010 | ND     | ND     | Q3 |  |
| y-Terpinene        | 0.0010 | ND     | ND     | Q3 |  |
| Geranyl Acetate    | 0.0010 | ND     | ND     | Q3 |  |
| Guaiol             | 0.0010 | ND     | ND     | Q3 |  |
| Isoborneol         | 0.0010 | ND     | ND     | Q3 |  |
| Isobornyl Acetate  | 0.0010 | ND     | ND     | Q3 |  |
| Isopulegol         | 0.0010 | ND     | ND     | Q3 |  |
| m-Cymene           | 0.0010 | ND     | ND     | Q3 |  |
| Menthol            | 0.0010 | ND     | ND     | Q3 |  |
| L-Menthone         | 0.0010 | ND     | ND     | Q3 |  |
| Nerol              | 0.0010 | ND     | ND     | Q3 |  |
| Nootkatone         | 0.0010 | ND     | ND     | Q3 |  |
| o,p-Cymene         | 0.0010 | ND     | ND     | Q3 |  |
| Octyl Acetate      | 0.0010 | ND     | ND     | Q3 |  |
| Phytane            | 0.0010 | ND     | ND     | Q3 |  |
| Piperitone         | 0.0010 | ND     | ND     | Q3 |  |
| Pulegone           | 0.0010 | ND     | ND     | Q3 |  |
| Sabinene           | 0.0010 | ND     | ND     | Q3 |  |
| Sabinene Hydrate   | 0.0010 | ND     | ND     | Q3 |  |
| Safranal           | 0.0010 | ND     | ND     | Q3 |  |
| Terpinen-4-ol      | 0.0010 | ND     | ND     | Q3 |  |
| Thymol             | 0.0010 | ND     | ND     | Q3 |  |
| trans-Citral       | 0.0010 | ND     | ND     | Q3 |  |
| trans-beta-Ocimene | 0.0010 | ND     | ND     | Q3 |  |
| Verbenone          | 0.0010 | ND     | ND     | Q3 |  |
| Total              |        | 6.8447 | 68.447 |    |  |

#### **Primary Aromas**













Date Tested: 01/18/2024 12:00 am Terpenes analysis is not regulated by AZDHS.





Bryant Kearl Lab Director 01/22/2024

Confident LIMS All Rights Reserved coa.support@confidentlims.com (866) 506-5866 www.confidentlims.com



ARIZONA DEPARTMENT OF HEALTH SERVICES' WARNING:
Marijuana use can be addictive and can impair an individual's ability to drive a motor vehicle or operate heavy machinery. Marijuana smoke contains carcinogens and can lead to an increased risk for cancer, tachycardia, hypertension, heart attack, and lung infection. Marijuana use may affect the health of a pregnant woman and the unborn child. Using marijuana during pregnancy could cause birth defects or other health issues to your unborn child;
KEEP OUT OF REACH OF CHILDREN.
The product associated with the COA has been tested by Apollo Labs using validated state certified testing methodologies as required by Arizona state law. Values reported herein relate only to the specific sample of

product submitted by Client for testing. Apollo Labs makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written approval of Apollo Labs.





(602) 767-7600 http://www.apollolabscorp.com Lic# 00000013LCRK62049775

6 of 6

#### **Garlic Butter Live Resin Sugar**

Sample ID: 2401APO0195.0912 Strain: Garlic Butter Matrix: Concentrates & Extracts

Type: Live Resin Source Batch #: 20230724GMOGRB-3T1T2LR XD:20240102

Produced: Collected: 01/12/2024 03:43 pm Received: 01/12/2024 Completed: 01/22/2024 Batch #: 20230724GMOGRB-3T1T2LR

XD:20240102 Harvest Date:

Client

Aeriz AZ

Lic. # 00000106DCQV00747138

Lot #:

Production Date: 01/02/2024 Production Method: Butane

# **Qualifiers Definitions**

| Qualifier<br>Notation | Qualifier Description                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I1                    | The relative intensity of a characteristic ion in a sample analyte exceeded the acceptance criteria in subsection (L)(1) with respect to the reference spectra, indicating interference                                                                                                                                                                                     |
| L1                    | When testing for pesticides, fungicides, herbicides, growth regulators, heavy metals, or residual solvents, the percent recovery of a laboratory control sample is greater than the acceptance limits in subsection $(K)(2)(c)$ , but the sample's target analytes were not detected above the maximum allowable concentrations in Table 3.1 for the analytes in the sample |
| M1                    | The recovery from the matrix spike in subsection (K)(4) was: a. High, but the recovery from the laboratory control sample in subsection (K)(2) was within acceptance criteria                                                                                                                                                                                               |
| M2                    | The recovery from the matrix spike in subsection (K)(4) was: b. Low, but the recovery from the laboratory control sample in subsection (K)(2) was within acceptance criteria                                                                                                                                                                                                |
| М3                    | The recovery from the matrix spike in subsection (K)(4) was: c. Unusable because the analyte concentration was disproportionate to the spike level, but the recovery from the laboratory control sample in subsection (K)(2) was within acceptance criteria                                                                                                                 |
| R1                    | The relative percent difference for the laboratory control sample and duplicate exceeded the limit in subsection $(K)(3)$ , but the recovery in subsection $(K)(2)$ was within acceptance criteria                                                                                                                                                                          |
| V1                    | The recovery from continuing calibration verification standards exceeded the acceptance limits in subsection (J) (1)(b), but the sample's target analytes were not detected above the maximum allowable concentrations in Table 3.1 for the analytes in the sample                                                                                                          |
| Q2                    | The sample is heterogeneous, and sample homogeneity could not be readily achieved using routine laboratory practices – Used to denote that the sample as-received could not be fully pre-homogenized in packaging prior to microbiology analysis                                                                                                                            |
| Q3                    | Testing result is for informational purposes only and cannot be used to satisfy dispensary testing requirements in R9-17-317.01(A) or labeling requirements in R9-17-317                                                                                                                                                                                                    |

#### Notes and Addenda:



Bryant Kearl Lab Director 01/22/2024

Confident LIMS All Rights Reserved coa.support@confidentlims.com (866) 506-5866 www.confidentlims.com

